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Abstract The kinetics of the dimer–dimer reaction, 2A2 + B2 → 2A2 B, proceeding
on supported catalysts is studied numerically using a phenomenological model which
includes: the bulk diffusion of reactants from a bounded vessel towards the adsorbent
and the product bulk one from the catalyst surface into the same vessel, adsorption
and desorption of particles of both reactants, and surface diffusion of adsorbed par-
ticles. Two different arrangements of adsorption sites were used: (i) the same total
amount of active and inactive in the surface reaction adsorption sites, (ii) the same
concentrations of active and inactive sites. Two adsorption cases of both reactants for
each arrangement of adsorption sites are considered: (i) each reactant adsorbs on both
active and inactive sites, (ii) both reactants adsorb only on the support. The model
where concentrations of both reactants at the catalyst surface are given is also studied.
Simulations were performed using the finite difference technique. The influence of the
size of the catalytic particle, surface diffusivity, adsorption rate constants, and particle
jump rate constants via the catalyst-support interface on the catalytic reactivity of the
supported catalyst is studied.

Keywords Heterogeneous reactions · Adsorption · Desorption · Surface diffusion ·
Spillover

1 Introduction

The surface of real catalysts consist of small metal catalyst particles placed on inactive
supports. The metal particles are active in reaction whereas the reaction cannot occur on
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the support. One of kinetic effects associated with small catalyst particles on a support
is the spillover phenomenon which plays a key role in catalytic reactions on supported
catalysts [1,2]. It is caused by the fact that parts of the surface that are inactive in
the surface reaction can be active for other processes that occur during the catalytic
reaction, i.e. adsorption–desorption process and increase or decrease concentrations of
either adsorbed reactant or product particles on active parts of the surface through the
diffusion of the adsorbed reactant particles across the interface between the catalyst
particles and the support [2,3].

The bibliography of the current state of the theoretical research of reactions with
spillover effects include papers based on the Monte Carlo simulations technique,
numerical solving of mean-field models, and analytical description of such effects. We
mention papers devoted to study of the spillover effect in the unimolecular, A → P ,
[3], monomer–monomer, A+ B → AB, [4,5], and monomer–dimer, 2A+ B2 → 2AB,
[2,6–8] reactions. The latter models the CO oxidation reaction, 2CO + O2 → 2CO2,
on the Pd/Al2O3 heterogeneous catalyst.

The dimer–dimer reactions, 2A2 + B2 → 2A2 B, proceeding on homogeneous
surfaces have been studied by many groups (see [9–11] and references there). Reac-
tions of this type are inspired by the catalytic oxydation of hydrogen on Pt cat-
alysts. In papers [9–11] the diffusionless steady-state models are studied. In this
paper, by employing a mean-field model and its numerical simulations we con-
sider the time-dependent dimer–dimer reaction, 2A2 + B2 → 2A2 B, on supported
(composite) catalysts. The model takes into account: the bulk diffusion of both
reactants from a bounded vessel toward the adsorbent and the reaction product
bulk one from the adsorbent into the same vessel, adsorption, desorption, and sur-
face diffusion of adsorbed particles of each reactant. The model is based on the
Langmuir–Hinshelwood surface reaction mechanism. The bulk diffusion of both
reactants and product particles is described by the Fick law while the surface dif-
fusion is based on the particle jumping mechanism [12]. Adsorption, desorption,
surface diffusion and reaction are allowed to proceed at a constant temperature and
the product desorption is assumed to be instantaneous. Lateral interactions between
adsorbed particles or adsorbate-induced changes in the surface [13–15] have been
neglected.

We consider two different arrangements of adsorption sites: (i) the same total
amount of active and inactive in the surface reaction adsorption sites, (ii) the same
concentrations of active and inactive adsorption sites. For each arrangement of adsorp-
tion sites we study two adsorption mechanisms of both reactants: (i) each reactant
adsorbs on both active and inactive adsorption sites, (ii) both reactants adsorb only
on the support. The goal of this paper is the numerical study of the surface dif-
fusivity, adsorption rate constants, particle jump rate constants via catalyst-support
interface, and catalytic particle size influence on the catalytic reactivity of supported
catalysts.

The paper is organized as follows. In Sect. 2 we present the model. In Sect. 3
we discuss numerical results. A summary of main results in Sect. 4 concludes the
paper.
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2 The model

We study the dimer–dimer heterogeneous reaction, 2A2 + B2 → 2A2 B, proceeding
on supported catalysts by using a mean-field approach. Assume that reactants A2, B2
and their reaction product P = A2 B of concentrations a(t, x), b(t, x), and p(t, x)

occupy a bounded domain Ω = {x = (x1, x2, x3) : xi ∈ [0, l], i = 1, 2, 3} with
boundary S̃ = S1 ∪ S2, where S2 = {x = (x1, x2, x3) : xi ∈ [0, l], i = 1, 3, x2 = 0}
and S1 = S̃ \ S2. Here t is time, x is a position, S2 is the surface of the adsorbent, and
S1 is a surface impermeable to the reactants and product. Obviously, x2 > 0 for S1.

Assume that S2 = S22 ∪ S21 where S22 = {(x1, x2, x3): x1 ∈ [0, x∗), x2 = 0, x3 ∈
[0, l]} and S21 = {(x1, x2, x3): x1 ∈ (x∗, l], x2 = 0, x3 ∈ [0, l]}, x∗ ∈ (0, l), are strips
consisting of the active and inactive sites, respectively. Let s2(x), x = (x1, x3) ∈ S22,
and s1(x), x = (x1, x3) ∈ S21, be the surface densities of the active and inactive sites
in the surface reaction.

According [9,11] the surface reaction 2A2 + B2 → 2A2 B occurs via steps
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A2 + 2S
k1 j

�
k−1 j

2AS,

B2 + 2S
k2 j

�
k−2 j

2BS,

AS + BS
k3−→ ABS + S,

AS + ABS
k4−→ P + 2S,

2ABS
k5−→ P + BS + S.

(1)

Here A2 and B2 are reactants, P = A2 B is their reaction product, S is the adjacent
vacant adsorption site, k ji and k− j i are the adsorption and desorption rates constants
(i = 1 for inactive site, i = 2 for active one), of reactants A ( j = 1) and B ( j = 2), k3
is the reaction between adsorbates AS and BS rate constant in Langmuir–Hinshelwood
step, k4 is the reaction between adsorbate AS and intermediate ABS rate constant, and
k5 is the conversion rate constant of ABS into product P . This model is inspired by the
catalytic oxidation of hydrogen on transition metal surfaces, i.e., A2 = H2, B2 = O2,
AB = OH, P = A2 B = H2 O .

Let u j2 = s2θ j2 and u j1 = s1θ j1 (θ j1, θ j2 ∈ (0, 1), j = 1, 2, 3) be densities of the
active and inactive in the surface reaction sites occupied by the adsorbed molecules of
reactants A ( j = 1) and B ( j = 2), and particles of intermediate ABS ( j = 3). Obvi-
ously, si (1−θ1i −θ2i −θ3i ), i = 1, 2, are the densities of the free adsorption sites. It is
evident that function u ji present a density of particles of species AS, BS, and ABS bound
to sites of type i (i = 1 for inactive and i = 2 for active site) that are located at point x .

Let κ j i be the surface diffusivity for particles of adsorbates AS ( j = 1), BS ( j = 2)
and intermediate ABS ( j = 3) on the surface S2i , i = 1, 2. To simplify the model we
restrict ourselves to the case where densities s1 and s2 do not depend on variable x3
and the initial values a0 and b0 of concentrations a and b are constants. In this case we
can reduce the three-dimensional problem into two-dimensional one. Let λ1,12, λ1,22,

and λ1,32 be the constants of the jump rates via the catalyst-support interface x∗ of
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escaped particles of species AS, BS, and ABS from the active position x∗ − 0 into the
nearest-neighbour vacant inactive site x∗ + 0. Similarly, λ2,11, λ2,21, and λ2,31 are
the constants of the jump rates via the catalyst-support of escaped particles of species
AS, BS, and ABS from the inactive position x∗ + 0 into the nearest-neighbour vacant
active site x∗ − 0. Assuming that product desorption is instantaneous and using mass
action law and the surface diffusion mechanism based on the particle jumping into a
nearest vacant adsorption site [12],

q ji = −κ j i

{

(si − u1i − u2i − u3i )∇u ji − u ji∇(si − u1i − u2i − u3i )

}

,

we get the following system for densities u ji :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u11 = 2

(

k11a(s1 − u11 − u21 − u31)
2 − k−11u2

11

)

+ κ11

(
(s1 − u21 − u31)

∂2u11
∂x2

1
− u11

∂2(s1−u21−u31)

∂x2
1

)
,

∂t u21 = 2

(

k21b(s1 − u11 − u21 − u31)
2 − k−21u2

21

)

+ κ21

(
(s1 − u11 − u31)

∂2u21
∂x2

1
− u21

∂2(s1−u11−u31)

∂x2
1

)
,

∂t u31 = κ31

(
(s1 − u11 − u21)

∂2u31
∂x2

1
− u31

∂2(s1−u11−u21)

∂x2
1

)

(2)

with x1 ∈ (x∗, l),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u12 = 2

(

k12a
(
s2 − u12 − u22 − u32

)2 − k−12u2
12

)

− k3u12u22

− k4u12u32 + κ12

((
s2 − u22 − u32

)
∂2u12
∂x2

1
− u12

∂2
(

s2−u22−u32

)

∂x2
1

)
,

∂t u22 = 2

(

k22b(s2 − u12 − u22 − u32)
2 − k−22u2

22

)

− k3u12u22

+ k5u2
32 + κ22

((
s2 − u12 − u32

)
∂2u22
∂x2

1
− u22

∂2(s2−u12−u32)

∂x2
1

)
,

∂t u32 = k3u12u22 − k4u12u32 − 2k5u2
32

+κ32

((
s2 − u12 − u22

)
∂2u32
∂x2

1
− u32

∂2(s2−u12−u22)

∂x2
1

)

(3)

with x1 ∈ (0, x∗). Here ∂t signifies the partial derivative with respect to time, ∇ is the
gradient operator, q ji is the surface diffusion flux of species AS ( j = 1), BS ( j = 2),
ABS ( j = 3) on the active (i = 2) and inactive (i = 1) interval, respectively. We add
to this system the initial,

u ji (0, x1) = 0, j = 1, 2, 3, i = 1, 2, (4)

and boundary conditions at points x1 = 0, x1 = l, x1 = x∗,
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⎧
⎪⎨

⎪⎩

∂u12

∂x1

∣
∣
∣
x1=0

= ∂u22

∂x1

∣
∣
∣
x1=0

= ∂u32

∂x1

∣
∣
∣
x1=0

= 0,

∂u11

∂x1

∣
∣
∣
x1=l

= ∂u21

∂x1

∣
∣
∣
x1=l

= ∂u31

∂x1

∣
∣
∣
x1=l

= 0,

(5)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ11

(
(
s1 − u21 − u31

)
∂u11
∂x1

− u11
∂
(

s1−u21−u31

)

∂x1

)
∣
∣
x∗+0

= κ12

(
(
s2 − u22 − u32

)
∂u12
∂x1

− u12
∂(s2−u22−u32)

∂x1

)
∣
∣
x∗−0

= λ2,11 u11|x∗+0
(
s2 − u12 − u22 − u32

)|x∗−0

− λ1,12 u12|x∗−0
(
s1 − u11 − u21 − u31

)|x∗+0,

κ21

(
(
s1 − u11 − u31

)
∂u21
∂x1

− u21
∂
(

s1−u11−u31

)

∂x1

)
∣
∣
x∗+0

= κ22

(
(
s2 − u12 − u32

)
∂u22
∂x1

− u22
∂
(

s2−u12−u32

)

∂x1

)
∣
∣
x∗−0

= λ2,21 u21|x∗+0
(
s2 − u12 − u22 − u32

)|x∗−0

− λ1,22 u22|x∗−0
(
s1 − u11 − u21 − u31

)|x∗+0,

κ31

(
(
s1 − u11 − u21

)
∂u31
∂x1

− u31
∂
(

s1−u11−u21

)

∂x1

)
∣
∣
x∗+0

= κ32

(
(
s2 − u12 − u22

)
∂u32
∂x1

− u32
∂
(

s2−u12−u22

)

∂x1

)
∣
∣
x∗−0

= λ2,31 u31|x∗+0
(
s2 − u12 − u22 − u32

)|x∗−0

− λ1,32 u32|x∗−0
(
s1 − u11 − u21 − u31

)|x∗+0.

(6)

The first terms (gain fluxes) on the right-hand side of Eq. (6) are conditioned by the
jumps via the catalyst-support interface x∗ of the escaped molecules of adsorbates
AS, BS, and intermediate ABS from the inactive position, x∗ + 0, of the support to
the nearest-neighbour vacant active one, x∗ − 0, of the catalyst. Similarly, the other
terms (loss fluxes) on the right-hand side of Eq. (6) are conditioned by the jumps via
the catalyst-support interface of the escaped molecules of the same species from the
active position x∗ − 0 of the catalyst to the nearest-neighbour vacant inactive one,
x∗ + 0, of the support.

Systems (2) and (3) involve the unknown values of concentrations a and b at the
catalyst surface. To solve this problem we join equations for the bulk diffusion of both
reactants,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t a = κa

(
∂2a
∂x2

1
+ ∂2a

∂x2
2

)

, (x1, x2) ∈ (0, l) × (0, l),

∂na|S1 = 0,

∂na = −
(

k11a
(
s1 − u11 − u21 − u31

)2 − k−11u2
11

)

/κa,

x1 ∈ (x∗, l), x2 = 0,

∂na = −
(

k12a
(
s2 − u12 − u22 − u32

)2 − k−12u2
12

)

/κa,

x1 ∈ (0, x∗), x2 = 0,

a(0, x) = a0(x), (x1, x2) ∈ (0, l) × (0, l),

(7)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t b = κb

(
∂2b
∂x2

1
+ ∂2b

∂x2
2

)

, (x1, x2) ∈ (0, l) × (0, l),

∂nb|S1 = 0,

∂nb = −
(

k21b(s1 − u11 − u21 − u31)2 − k−21u2
21

)

/κb,

x1 ∈ (x∗, l), x2 = 0,

∂nb = −
(

k22b(s2 − u12 − u22 − u32)2 − k−22u2
22

)

/κb,

x1 ∈ (0, x∗), x2 = 0.

b(0, x) = b0(x), (x1, x2) ∈ (0, l) × (0, l).

(8)

Here ∂na and ∂nb are the outward normal derivatives. We describe the bulk diffusion
of product P by the equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂t p = κp

(
∂2 p
∂x2

1
+ ∂2 p

∂x2
2

)

, (x1, x2) ∈ (0, l) × (0, l),

∂n p|S1 = 0,

∂n p = (k5u2
32 + k4u12u32)/κp, x1 ∈ (0, x∗), x2 = 0,

∂n p = 0, x1 ∈ (x∗, l), x2 = 0,

p(0, x) = 0, (x1, x2) ∈ (0, l) × (0, l).

(9)

System (2)–(9) possesses two conservation laws

∫

Ω

(2a + 2p) dx +
x∗∫

0

(u12 + u32) dx1 +
l∫

x∗

(u11 + u31) dx1 =
∫

Ω

2a0 dx, (10)

∫

Ω

(2b + p) dx +
x∗∫

0

(u22 + u32) dx1 +
l∫

x∗

(u21 + u31) dx1 =
∫

Ω

2b0 dx . (11)

Coupled system (2)–(9) determines densities u ji (or surface coverages θ j i ) for all
x ∈ S2 and concentrations a, b, and p of reactants A, B and product P for all x ∈ Ω

and t > 0.
We also study system (2)–(6) with given concentrations a and b at the surface S2.
The main characteristic that we study is the surface S22 specific conversion rate of

the reactants molecules into the product ones (turn-over rate or turn-over frequency)
determined by the formula

z =
x∗∫

0

(
k5u2

32 + k4u12u32
)

dx1

/
x∗∫

0

s2 dx1. (12)

Using the dimensionless variables t̄ = t/T , x̄i = xi/ l, ā = a/a∗, b̄ = b/a∗,
p̄ = p/a∗, s̄i = si/s∗, s∗ = la∗, k̄in = kinT la2∗ , k̄−in = k−inT la∗, k̄3 = k3T la∗,
k̄4 = k4T la∗, k̄5 = k5T la∗, κ̄ j i = κ j i a∗T/ l, κ̄a = κaT/ l2, κ̄b = κbT/ l2, κ̄p =
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κpT/ l2, λ̄n, j i = a∗T λn, j i , ū j i = s̄iθ j i where i = 1, 2, j = 1, 2, 3, n = 1, 2, and
T, l, a∗ are the characteristic dimensional units, we rewrite Eqs. (2)–(12) in the same
form, but in dimensionless variables where dimensionless l = 1. We omit the overbar
on the quantities and treat Eqs. (2)–(12) as dimensionless for simplicity.

3 Numerical results

System (2)–(6) with given values of a and b at the surface S2 was solved numerically
using an implicit difference scheme. To solve system (2)–(9) numerically we used
an implicit difference scheme based on the alternating direction method [16]. For all
calculations we used the following model dimensional data:

T = 1 s, l = 10−1 cm, a∗ = 10−11 mol cm−3,

s∗ = 10−12 mol cm−2, kin = k̄in · 1023 cm5 mol−2 s−1,

k−in = k̄−in · 1012 cm2 mol−1 s−1,

(κa, κb, κp) = (κ̄a, κ̄b, κ̄p) · 10−2 cm2 s−1,

κ j i = κ̄ j i · 1010 mol−1 cm4 s−1,

λn, j i = λ̄n, j i · 1011 mol−1cm3s−1,

(k3, k4, k5) = (k̄3, k̄4, k̄5) · 1012 mol−1cm2s−1 (13)

The following values of dimensionless parameters (overbar on the quantities is
omitted) excluding those given in captions were used in calculations:

k ji = 1.5 · 10−2, k− j i = 1.5 · 10−3,

κ j i = 0.5, λn, j i = 0.1, j = 1, 2, 3, i = 1, 2, n = 1, 2,

k3 = k4 = k5 = 0.1,

κa = κb = κp = 0.1,

x∗ = 0.5. (14)

In the case where values of k ji , κ j i , and λn, j i do not depend on the specific values
of indices we use k, κ , and λ for short. Of course, the case where k ji , κ j i , and λn, j i do
not depend on values of indices is not realistic. However, it is useful for study of many
different physico-chemical processes. As we indicated in Sect. 2, the main purpose
of our study was to estimate the turn-over rate z(t). Numerical results are illustrated
in Figs. 1, 2, 3, 4, 5, and 6. Figs. 1, 2 and 3 correspond to Eqs. (2)–(6) with given
values of concentrations a and b at the catalyst surface S2, while the other three figures
illustrate dynamics of z(t) determined by Eqs. (2)–(8). In calculations we used two
types of adsorption sites arrangement: (i) the same total amount of active and inactive
adsorption sites, i.e. (i) s2x∗ = s1(1 − x∗), (ii) s1 = s2.

Figure 1 illustrates the dependence of the turn-over rate z(t) on the variation of
size x∗ of the catalyst particle for both arrangements of adsorption sites (solid lines
correspond to the same total amount of active and inactive adsorption sites while the
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Fig. 1 Influence of the active interval length x∗ on the turnover rate z(t) determined by Eqs. (2)–(6) with
a = b = 1 at the surface S2 for densities s2 = s1(1/x∗ − 1), s1 = 1 (solid line) and s1 = s2 = 1 (dashed
line) in the case κ = 0.5, λ = 0.1. Values of x∗: 0.2 (1), 0.4 (2), 0.6 (3)

dashed lines illustrate the behaviour of z(t) determined for the same concentrations of
active and inactive sites) in the case where reaction rate constants k3 = k4 = k5 = 0.1,
bulk diffusivity κ = 0.5, particle jump rate constant via the interface of the catalyst-
support λ = 0.1, adsorption rate constant k = 1.5 · 10−2 (Fig. 1a) and k12 = k22 = 0,
k11 = k21 = 1.5 ·10−2 (Fig. 1b). Values of adsorption rate constants show that Fig. 1b
correspond to the case where active in the surface reaction sites are adsorption-inactive.
In this case the surface reactions proceeds only due to spillover phenomenon. The
qualitative behaviour of z(t) (see Fig. 1a, b) is similar in both cases of the adsorption
rate constants (solid lines) or both types of adsorption sites arrangements (dashed
lines). For all t , z(t) grows as size x∗ decreases. For fixed values of parameters, z(t)
also grows as time increases, reaches a maximum value and then decreases to a positive
stationary value. In the case of small x∗ and s1 = s2 the peak of z(t) is not so sharp
as that corresponding to s2 = s1(1/x∗ − 1). Moreover, for small time in the case of
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Fig. 2 Effect of surface diffusivity κ (a) and jump rate constants λi, jn (b) on function z(t) determined by
(2)–(6) with a = b = 1 at the surface S2 in case s2 = s1(1/x∗ − 1), s1 = 1. λi, jn = 0.1 for all values of
indices excluding those given in the figure

small adsorption rate constants k12, k22 and x∗ < 0.5, values of z(t) corresponding
to s2 = s1(1/x∗ − 1) are larger than those corresponding to s2 = s1, while for large
time or x∗ > 0.5 the behaviour of z(t) is opposite. In case of large k12, k22 and small
x∗, z(t) corresponding to s2 = s1(1/x∗ − 1) is larger than that determined by s2 = s1
for all t .

Figure 2 depicts the influence of the variation of the surface diffusivity κ (Fig. 2a)
and particle jump rate constant λn, j i (Fig. 2b) for x∗ = 0.5, k3 = k4 = k5 = 0.1,
k = 1.5 · 10−2, and k− j i = 1.5 · 10−3 with all values of indices. Figure 2a shows
the increase of z(t) as κ grows and also demonstrates the nonmonotonic behaviour
of z(t) in time. As in Fig. 1 for fixed values of parameters, z(t) increases as time
grows, reaches a maximum value, and then decreases to a positive stationary value.
Calculations show an insignificant influence of the variation of κ2i or κ3i , i = 1, 2, and
κ12 on the behaviour of z(t). The dependence of z(t) on κ11 is more appreciable. Plots
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Fig. 3 Dependence of turnover rate z(t) determined by (2)–(6) with a = b = 1 at the surface S2 for
densities s2 = s1(1/x∗ − 1), s1 = 1 on the adsorption rate constants ki j . a k11 = k12 = 1.5 · 10−2,

k21 = k22 = qk11. b k12 = k22 = 1.5 · 10−2, k11 = k21 = qk12

in Fig. 2b demonstrate the increase of z(t) as λ2,31 or λ2,11 grows and its decrease as
λ1,32 or λ2,21 increases. The most essential is parameter λ2,11.

The influence of adsorption rate constant k ji on the behaviour of z(t) is depicted in
Fig. 3a, b for x∗ = 0.5, κ = 0.1, k3 = k4 = k5 = 0.1, and k− j i = 1.5 · 10−3 with all
values of indices. Plots in Fig. 3a correspond to the same value of the adsorption rate
constant of reactant A on both active and inactive intervals, k11 = k12 = 1.5 · 10−2,
and different values of common for both intervals adsorption rate constant of reactant
B, k21 = k22 = qk11, q = 0.2, 0.4, 0.5, 0.6, 0.9, 1, 1.1, 2. This figure shows the
nonmonotonic behaviour of z in time for all values of q excluding value q �= 0.5 for
which z(t) monotonically tends to an asymptotic value. For fixed q (q �= 0.5) function
z(t) grows, reaches a maximum value, and then tends to a positive asymptotic value
as time increases. Plots in this figure depict the increase of the asymptotic value of
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Fig. 4 Influence of the active interval length x∗ (a) and surface diffusivity κ (b) on the turnover rate z(t)
determined by Eqs. (2)–(9) with densities a0(x1, x2) = b0(x1, x2) = 1 and s2 = s1(1/x∗ − 1), s1 = 1

z(t) as q grows till 0.5 where it reaches a maximum value. Then the asymptotic value
z(t) decreases as q grows. Calculations show that for large time and q < 0.5 or
q > 0.5 the both active and inactive intervals are predominantly covered by particles
of reactant A or B, respectively. The same results have been given in [9] for the case
of homogeneous catalysts.

We also studied three additional cases: (i) k11 = k12 = k22 = 1.5·10−2, k21 = qk11,
(ii) k11 = k12 = k21 = 1.5 · 10−2, k22 = qk11, (iii) k12 = k21 = k22, k11 = qk12.
In the first case the maximal asymptotic value of z occurs at q = 0, but this value
is smaller than the local maximum value of z(t) reached at small time. In the second
case, z monotonically increases to an asymptotic value only for q ≈ 0.1. The dif-
ference between this value of z and that corresponding to k11 = k12 = 1.5 · 10−2,
k21 = k22 = 0.5k11 is smaller than 1% of the latter one. For q �= 0.1, z(t) behaves non-
monotonically, i.e., reaches maximal value and then decreases to an asymptotic value.
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Fig. 5 Dependence of the turnover rate z(t) determined by Eqs. (2)–(9) with densities a0(x1, x2) =
b0(x1, x2) = 1 and s2 = s1(1/x∗ − 1), s1 = 1 on the parameters λi, jn . λi, jn = 0.1 for all values of
indices excluding those given in the figure
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Fig. 6 Dependence of the total amount of the product Ip on the active interval length x∗. Densities
a0(x1, x2) = b0(x1, x2) = 1 and s2 = s1(1/x∗ − 1), s1 = 1—solid line, s1 = s2 = 1—dashed line

In the third case, z(t) grows as q increases, but preserves nonmonotonic behaviour in
time. This increase can be explained only by the spillover effect.

Plots in Fig. 3b illustrate the influence of the same adsorption rate constant of both
reactants for the inactive interval, k11 = k21 = qk12, q = 0.1, 0.5, 1, 2, 5, on the
behaviour of z(t) provided that the common adsorption rate constant of both reactants
on the active interval k12 = k22 = 1.5 · 10−2. This figure demonstrates the substantial
influence of the spillover effect on the monotonic growth of z(t) as q increases and
the nonmonotonic behaviour of z(t) in time for all considered values of q.

We also compared the influence of reaction rate constants k4 and k5 on the behaviour
of z(t) determined by system (2)–(6) with given values of a and b at the surface S2
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in cases where (i) k4 = k5 = 0.1; (ii) k4 = 0, k5 = 0.1; and (iii) k4 = 0.1, k5 =
0. Calculations show that z(t) determined for the third collection is between those
corresponding to the first and second ones only for small time, while for large time
z(t) determined by the second collection is between those determined for the third
and first ones. Moreover, the asymptotic values of z corresponding to the first and
second collection of parameters are about 2.04 and 1.9, respectively, times larger than
that corresponding to the third one, while the difference of the asymptotic values of z
corresponding to the first and second collections of parameters is about 6.9 % of the
first one.

Plots in Figs. 4 and 5 correspond to system (2)–(8) and are depicted for initial
values a0 = b0 = 1 and the same total active and inactive in reaction adsorption sites.
Figure 4 illustrates the dependence of z(t) on the size x∗ of catalytic particle (Fig. 4a)
and surface diffusivity κ (Fig. 4b) for the same values of parameters as in Figs. 1a
and 2a, respectively. Contrary to Fig. 1a, Fig. 4a demonstrates the increase of z(t) as
x∗ grows only for small time. For large time, z(t) behaves vice-versa and tends to zero
as time grows. This effect can be explained by the depletion of mass of both reactants
from domain Ω during reactions.

Plots in Fig. 5 illustrate the effect of particle jump rate constant λn, j i on the behav-
iour of z(t). We observe a similar nonmonotonic behaviour of plots in Figs. 2b and 5,
but the later ones tend to zero as time grows, while all plots in Fig. 3 remain positive.

Figure 6 illustrates the influence of catalytic particle size x∗ on the behaviour on the
total product amount Ip = ∫ x∗

0

∫ x∗
0 p(t, x1, x2) dx1 dx2 for two types of the active sites

arrangement. In the case of equal total amount of active and inactive adsorption sites,
Ip grows as x∗ decreases and behaves vice-versa in the case of equal concentrations
of active and inactive adsorption sites.

4 Conclusions

To conclude the paper we summarise the main results. Using the phenomenological
(mean-field) model in two-dimensional space we studied numerically dimer–dimer
surface reactions of type 2A2 + B2 → 2A2 B proceeding on supported catalysts
taking into account the bulk diffusion of both reactants and product in a bounded
vessel. The model includes the adsorption, desorption, surface diffusion of adsorbed
particles of each reactant, and rapid product desorption from the surface. The model
where concentrations of both reactants at the catalyst surface are given is also studied.
To describe the surface diffusion the particle jumping mechanism [12] was applied.
Two different arrangements of adsorption sites were used: (i) the same total amount of
active and inactive in reaction adsorption sites, (ii) the same concentrations of active
and inactive in reaction adsorption sites. Two adsorption mechanisms of both reactants
for each arrangement of adsorption sites are considered: (i) each reactant adsorbs on
both active and inactive in reaction adsorption sites, (ii) both reactants adsorb only on
the support.

Inactive in reaction adsorption sites due to possibility to adsorb of particles of both
reactants constitute the additional (to the adsorption) spillover channel transporting
particles onto active ones.
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The main characteristic we studied was the turn-over rate (specific conversion rate
of molecules of both reactants into the product particles). We analysed the spillover
effect on the turn-over rate and demonstrated that:

1. The size of active interval x∗ strongly influences the turn-over rate. In both cases of
adsorption sites arrangement, z(t) determined by Eqs. (2)–(6) with given values of
concentrations of both reactants at the catalyst surface or (2)–(8) grows as size x∗
decreases. Moreover, for small time, in the case of small adsorption rate constants
k12, k22 and x∗ < 0.5, values of z(t) corresponding to s2 = s1(1/x∗ − 1) are
larger than those corresponding to s2 = s1, while for large time or x∗ > 0.5 the
behaviour of z(t) is opposite.

2. The increase of diffusivity κ increases z(t) corresponding to system (2)–(6) with
given a and b at the catalyst surface for all time, while z(t) determined by Eqs.
(2)–(8) grows as κ only for small time. For large time it behaves vice-versa.

3. z(t) increases as λ2,31 or λ2,11 grows and decreases as λ1,32 or λ2,21 increases.
The most essential is parameter λ2,11.

4. The asymptotic value of z(t) as a function of k21 = k22 has maximum at the
point k21 = k22 = 0.5k11, k11 = k12 = 1.5 · 10−2 which is larger than z(t)
for any t . Function z(t) also preserves the similar behaviour in the case where
k11 = k12 = k21 = 1.5 · 10−2, k22 = 0.1k11.

5. Asymptotic values of z determined by system (2)–(6) with the surface reaction
step with k4 = 0 and positive k5 are much more larger than those corresponding
to the step where k5 = 0 and k4 > 0.

Results of simulations let us to think that the mean-field model presented here is
able to describe qualitatively processes proceeding at the constant temperature during
dimer–dimer reactions on supported catalysts.
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